387 research outputs found

    Compatible finite element spaces for geophysical fluid dynamics

    Get PDF
    Compatible finite elements provide a framework for preserving important structures in equations of geophysical uid dynamics, and are becoming important in their use for building atmosphere and ocean models. We survey the application of compatible finite element spaces to geophysical uid dynamics, including the application to the nonlinear rotating shallow water equations, and the three-dimensional compressible Euler equations. We summarise analytic results about dispersion relations and conservation properties, and present new results on approximation properties in three dimensions on the sphere, and on hydrostatic balance properties

    Multisymplectic formulation of fluid dynamics using the inverse map

    Get PDF
    We construct multisymplectic formulations of fluid dynamics using the inverse of the Lagrangian path map. This inverse map, the ‘back-to-labels’ map, gives the initial Lagrangian label of the fluid particle that currently occupies each Eulerian position. Explicitly enforcing the condition that the fluid particles carry their labels with the flow in Hamilton's principle leads to our multisymplectic formulation. We use the multisymplectic one-form to obtain conservation laws for energy, momentum and an infinite set of conservation laws arising from the particle relabelling symmetry and leading to Kelvin's circulation theorem. We discuss how multisymplectic numerical integrators naturally arise in this approach.</p

    A primal-dual mimetic finite element scheme for the rotating shallow water equations on polygonal spherical meshes

    Get PDF
    Copyright © 2015 Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in Journal of Computational Physics. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Computational Physics Vol. 290 (2015), DOI: 10.1016/j.jcp.2015.02.045A new numerical method is presented for solving the shallow water equations on a rotating sphere using quasi-uniform polygonal meshes. The method uses special families of finite element function spaces to mimic key mathematical properties of the continuous equations and thereby capture several desirable physical properties related to balance and conservation. The method relies on two novel features. The first is the use of compound finite elements to provide suitable finite element spaces on general polygonal meshes. The second is the use of dual finite element spaces on the dual of the original mesh, along with suitably defined discrete Hodge star operators to map between the primal and dual meshes, enabling the use of a finite volume scheme on the dual mesh to compute potential vorticity fluxes. The resulting method has the same mimetic properties as a finite volume method presented previously, but is more accurate on a number of standard test cases.Natural Environment Research Council under the “GungHo” projec

    Discrete momentum maps for lattice EPDiff

    Get PDF
    We focus on the spatial discretization produced by the Variational Particle-Mesh (VPM) method for a prototype fluid equation the known as the EPDiff equation}, which is short for Euler-Poincar\'e equation associated with the diffeomorphism group (of Rd\mathbb{R}^d, or of a dd-dimensional manifold Ω\Omega). The EPDiff equation admits measure valued solutions, whose dynamics are determined by the momentum maps for the left and right actions of the diffeomorphisms on embedded subspaces of Rd\mathbb{R}^d. The discrete VPM analogs of those dynamics are studied here. Our main results are: (i) a variational formulation for the VPM method, expressed in terms of a constrained variational principle principle for the Lagrangian particles, whose velocities are restricted to a distribution D_{\VPM} which is a finite-dimensional subspace of the Lie algebra of vector fields on Ω\Omega; (ii) a corresponding constrained variational principle on the fixed Eulerian grid which gives a discrete version of the Euler-Poincar\'e equation; and (iii) discrete versions of the momentum maps for the left and right actions of diffeomorphisms on the space of solutions

    A framework for the automation of generalised stability theory

    No full text

    Hamiltonian particle-mesh method for two-layer shallow-water equations subject to the rigid-lid approximation

    Get PDF
    We develop a particle-mesh method for two-layer shallow-water equations subject to the rigid-lid approximation. The method is based on the recently proposed Hamiltonian particle-mesh (HPM) method and the interpretation of the rigid-lid approximation as a set of holonomic constraints. The suggested spatial discretization leads to a constrained Hamiltonian system of ODEs which is integrated in time using a variant of the symplectic SHAKE/RATTLE algorithm. It is demonstrated that the elimination of external gravity waves by the rigid-lid approximation can be achieved in a computationally stable and efficient way

    Higher-order compatible finite element schemes for the nonlinear rotating shallow water equations on the sphere

    Get PDF
    This is the final version. Available from Elsevier via the DOI in this record.We describe a compatible finite element discretisation for the shallow water equations on the rotating sphere, concentrating on integrating consistent upwind stabilisation into the framework. Although the prognostic variables are velocity and layer depth, the discretisation has a diagnostic potential vorticity that satisfies a stable upwinded advection equation through a Taylor–Galerkin scheme; this provides a mechanism for dissipating enstrophy at the gridscale whilst retaining optimal order consistency. We also use upwind discontinuous Galerkin schemes for the transport of layer depth. These transport schemes are incorporated into a semi-implicit formulation that is facilitated by a hybridisation method for solving the resulting mixed Helmholtz equation. We demonstrate that our discretisation achieves the expected second order convergence and provide results from some standard rotating sphere test problems.Natural Environment Research Council (NERC)Natural Environment Research Council (NERC)Engineering and Physical Sciences Research Council (EPSRC)Engineering and Physical Sciences Research Council (EPSRC

    Stochastic partial differential fluid equations as a diffusive limit of deterministic Lagrangian multi-time dynamics

    Get PDF
    In Holm (Holm 2015 Proc. R. Soc. A 471, 20140963. (doi:10.1098/rspa.2014.0963)), stochastic fluid equations were derived by employing a variational principle with an assumed stochastic Lagrangian particle dynamics. Here we show that the same stochastic Lagrangian dynamics naturally arises in a multi-scale decomposition of the deterministic Lagrangian flow map into a slow large-scale mean and a rapidly fluctuating small-scale map. We employ homogenization theory to derive effective slow stochastic particle dynamics for the resolved mean part, thereby obtaining stochastic fluid partial equations in the Eulerian formulation. To justify the application of rigorous homogenization theory, we assume mildly chaotic fast small-scale dynamics, as well as a centring condition. The latter requires that the mean of the fluctuating deviations is small, when pulled back to the mean flow
    • 

    corecore